Data centers in space makes no sense
civai.org776 points by ajyoon 18 hours ago
776 points by ajyoon 18 hours ago
I would not assume cooling has been worked out.
Space is a vacuum. i.e. The lack-of-a-thing that makes a thermos great at keeping your drink hot. A satellite is, if nothing else, a fantastic thermos. A data center in space would necessarily rely completely on cooling by radiation, unlike a terrestrial data center that can make use of convection and conduction. You can't just pipe heat out into the atmosphere or build a heat exchanger. You can't exchange heat with vacuum. You can only radiate heat into it.
Heat is going to limit the compute that can be done in a satellite data centre and radiative cooling solutions are going to massively increase weight. It makes far more sense to build data centers in the arctic.
Musk is up to something here. This could be another hyperloop (i.e. A distracting promise meant to sabotage competition). It could be a legal dodge. It could be a power grab. What it will not be is a useful source of computing power. Anyone who takes this venture seriously is probably going to be burned.
It's exiting the 5th best social network and the 10th (or worse) best AI company and selling them to a decent company.
It probably increases Elon's share of the combined entity.
It delivers on a promise to investors that he will make money for them, even as the underlying businesses are lousy.
I'm confused about the level of conversation here. Can we actually run the math on heat dissipation and feasibility?
A Starlink satellite uses about 5K Watts of solar power. It needs to dissipate around that amount (+ the sun power on it) just to operate. There are around 10K starlink satellites already in orbit, which means that the Starlink constellation is already effectively equivalent to a 50 Mega-watt (in a rough, back of the envelope feasibility way).
Isn't 50MW already by itself equivalent to the energy consumption of a typical hyperscaler cloud?
Why is starlink possible and other computations are not? Starlink is also already financially viable. Wouldn't it also become significantly cheaper as we improve our orbital launch vehicles?
Output from radiating heat scales with area it can dissipate from. Lots of small satellites have a much higher ratio than fewer larger satellites. Cooling 10k separate objects is orders of magnitude easier than 10 objects at 1000x the power use, even if the total power output is the same.
Distributing useful work over so many small objects is a very hard problem, and not even shown to be possible at useful scales for many of the things AI datacenters are doing today. And that's with direct cables - using wireless communication means even less bandwidth between nodes, more noise as the number of nodes grows, and significantly higher power use and complexity for the communication in the first place.
Building data centres in the middle of the sahara desert is still much better in pretty much every metric than in space, be it price, performance, maintainance, efficiency, ease of cooling, pollution/"trash" disposal etc. Even things like communication network connectivity would be easier, as at the amounts of money this constellation mesh would cost you could lay new fibre optic cables to build an entire new global network to anywhere on earth and have new trunk connections to every major hub.
There are advantages to being in space - normally around increased visibility for wireless signals, allowing great distances to be covered at (relatively) low bandwidth. But that comes at an extreme cost. Paying that cost for a use case that simply doesn't get much advantages from those benefits is nonsense.
Simply put no, 50MW is not the typical hyperscaler cloud size. It's not even the typical single datacenter size.
A single AI rack consumes 60kW, and there is apparently a single DC that alone consumes 650MW.
When Microsoft puts in a DC, the machines are done in units of a "stamp", ie a couple racks together. These aren't scaled by dollar or sqft, but by the MW.
And on top of that... That's a bunch of satellites not even trying to crunch data at top speed. No where near the right order of magnitude.
But the focus on building giant monolithic datacenters comes from the practicalities of ground based construction. There are huge overheads involved with obtaining permits, grid connections, leveling land, pouring concrete foundations, building roads and increasingly often now, building a power plant on site. So it makes sense to amortize these overheads by building massive facilities, which is why they get so big.
That doesn't mean you need a gigawatt of power before achieving anything useful. For training, maybe, but not for inference which scales horizontally.
With satellites you need an orbital slot and launch time, and I honestly don't know how hard it is to get those, but space is pretty big and the only reasons for denying them would be safety. Once those are obtained done you can make satellite inferencing cubes in a factory and just keep launching them on a cadence.
I also strongly suspect, given some background reading, that radiator tech is very far from optimized. Most stuff we put into space so far just doesn't have big cooling needs, so there wasn't a market for advanced space radiator tech. If now there is, there's probably a lot of low hanging fruit (droplet radiators maybe).
But why would you?
Space has some huge downsides:
* Everything is being irradiated all the time. Things need to be radiation hardened or shielded.
* Putting even 1kg into space takes vast amounts of energy. A Falcon 9 burns 260 MJ of fuel per kg into LEO. I imagine the embodied energy in the disposable rocket and liquid oxygen make the total number 2-3x that at least.
* Cooling is a nightmare. The side of the satellite in the sun is very hot, while the side facing space is incredibly cold. No fans or heat sinks - all the heat has to be conducted from the electronics and radiated into space.
* Orbit keeping requires continuous effort. You need some sort of hypergolic rocket, which has the nasty effect of coating all your stuff in horrible corrosive chemicals
* You can't fix anything. Even a tiny failure means writing off the entire system.
* Everything has to be able to operate in a vacuum. No electrolytic capacitors for you!
So I guess the question is - why bother? The only benefit I can think of is very short "days" and "nights" - so you don't need as much solar or as big a battery to power the thing. But that benefit is surely outweighed by the fact you have to blast it all into space? Why not just overbuild the solar and batteries on earth?
Maybe they should try to build it in the moon. Difficult, but perhaps not as difficult?
Almost none of the parent’s bullet points are solved by building on the Moon instead of in Earth orbit.
The energy demands of getting to the 240k mile Moon are IMMENSE compared to 100 mile orbit.
Ultimately, when comparing the 3 general locations, Earth is still BY FAR the most hospitable and affordable location until some manufacturing innovations drop costs by orders of magnitude. But those manufacturing improvements have to be made in the same jurisdiction that SpaceXAI is trying to avoid building data centers in.
This whole things screams a solution in search of a problem. We have to solve the traditional data center issues (power supply, temperature, hazard resilience, etc) wherever the data centers are, whether on the ground or in space. None of these are solved for the theoretical space data centers, but they are all already solved for terrestrial data centers.